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A nonreflecting boundary condition is presented for the numerical solution of the time- 
dependent compressible Navier-Stokes equations when these equations are used to obtain 
a steady state. This boundary condition is shown to be effective in reducing reflections at a 
subsonic outflow boundary. Numerical calculations using a model problem were made to 
compare this boundary condition with other outflow boundary conditions. The non- 
reflecting boundary condition contains a parameter whose optimal value is estimated 
using the analysis of a simplified set of equations. 

I. INTRODUCTION 

In the computation of solutions to the Navier-Stokes equations one of the chief 
difficulties is the numerical treatment of boundaries across which the fluid passes. 
This is especially true of subsonic outflow boundaries. In this paper several treatments 
of subsonic outflow boundaries are discussed and a new nonreflecting boundary 
condition is proposed. The emphasis is on obtaining the steady-state solution rather 
than the transient solution. 

The Navier-Stokes equations require one boundary condition at a subsonic outflow 
boundary (see Oliger and Sundstriim [6]). One physical quantity that is readily 
measurable in many subsonic flow experiments is static pressure. Therefore in this 
paper it will be assumed that pressure is the only physical quantity that is known at 
the outflow boundary of the computational domain. In addition, in many cases the 
outflow boundary can be located so that the pressure is known to be a constant along 
that boundary. 

* The research for the second author was supported under NASA Contract NASl-14101 while 
he was in residence at ICASE, NASA Langley Research Center, Hampton, Va. 23665. 

55 
0021-9991/80/070055-16$0200/O 

Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



56 RUDY AND STRIKWERDA 

The above considerations naturally lead one to impose the boundary condition 
that the pressure along the outflow boundary is held fixed at a known value i.e., 

pout = pa . (1.1) 

This boundary condition is well posed (see Oliger and Sundstrijm [6]) and often 
works very well computationally; however, in certain problems, especially those in 
which one is seeking the steady-state solution of the Navier-Stokes equations, it can 
reflect pressure disturbances back into the computational domain. These disturbances 
can set up standing waves that are damped only very slowly by viscous and dissi- 
pative effects, and so inhibit convergence to steady state. This behavior is illustrated 
by the computations discussed in later sections. 

Recently, there have appeared papers by Engquist and Majda [2] and Hedstrom 
[4] dealing with nonreflecting boundary conditions for partial differential equations. 
Nonreflecting boundary conditions are those that inhibit the reflection of distur- 
bances incident on the boundary. The purpose of this paper is to examine these papers 
from a computational standpoint and to present a nonreflecting boundary condition 
for the compressible Navier-Stokes equations that can be applied at subsonic outflow 
boundaries. The various boundary conditions are compared using a model problem 
and suggestions are given for their use in more realistic computational problems. The 
results of this paper are stated for the viscous Navier-Stokes equations but clearly 
they are applicable to the inviscid (i.e., Euler) equations as well. 

The reader is referred to the paper of Gustafsson and Kreiss [3] for a more general 
analysis of computational boundary conditions. 

II. NONREFLECTING BOUNDARY CONDITIONS 

In this section the techniques of Engquist and Majda [2] and Hedstrom [4] are 
applied to the Navier-Stokes equations. Because the Navier-Stokes equations are 
nonlinear and not hyperbolic, due to the viscous terms, the results of Engquist and 
Majda cannot be applied directly. Therefore only the linearized, inviscid equations 
will be treated. Let p, Zr, V, and p represent a steady-state solution to the inviscid 
Navier-Stokes equations and let p”, u”, 5, and fi be perturbations about that state. The 
equations to first order in the perturbation variables are 

The region of interest is the half-plane x < L, y E iw, t 3 0, and assume that at x = L, 

0 < u < c = ()p#~“, 

so that this is a subsonic outflow boundary. 
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The first approximation of Engquist and Majda [2] is 

or, equivalently, 

p - pcu = jj - pc;fi. (2.2) 

The quantity p” - @Z is the incoming characteristic variable for the one-dimensional 
problem obtained by neglecting the terms with y derivatives in Eq. (2.1). 

The boundary condition (2.2) was tried in a model problem for which the steady- 
state values of all the variables were known (see Section IV) and it achieved the 
steady-state solution much faster than did boundary condition (1.1). However, in 
general the steady-state values of all the variables are not known a priori and there- 
fore boundary condition (2.2) cannot be used in general. The second approximation 
of Engquist and Majda is of the form 

where the coefficients ci involve p, U, C, and p and their spatial derivatives. Again the 
difficulty is that all the steady-state values are not known. 

Hedstrom [4] has recently obtained a nonreflecting boundary condition for the 
nonlinear one-dimensional inviscid Navier-Stokes equations. His boundary condition 
is equivalent to 

ap - -- 
at 

pc; = 0. (2.4) 

Hedstrom shows that outgoing simple waves produce no reflections when boundary 
condition (2.4) is used. 

Note that boundary condition (2.4) requires no a priori knowledge of the steady- 
state values of the variables. This has the result that the steady-state solution is 
dependent on the initial data; in particular, the steady-state pressure may not be p. 
Since the emphasis in this paper is on the steady-state subsonic solution rather than 
the transient solution emphasized by Hedstrom, boundary condition (2.4) is not 
satisfactory. 

In analogy with both boundary conditions (2.3) and (2.4), consider 

a/J -’ 
- - pc; + cd(p - F) = 0, i;t (2.5) 

where a. is some number to be determined. This boundary condition has the advan- 
tage that it gives precisely the right amount of boundary data because if a steady- 
state solution is achieved then the outflow pressure will be the desired value. However, 
it has the disadvantage of requiring the specification of the parameter N. 
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In the next section the optimum value for the parameter 01 is obtained for the case 
of linearized one-dimensional equations and in the last section computational results 
are presented for the Navier-Stokes equations in two dimensions. In Section V it is 
shown that a good approximation of the optimal parameter 01 can be given and that 
with a good choice of this parameter the steady-state solution can be obtained more 
readily. 

Another way to treat the outflow boundary is to use a reference plane characteristic 
scheme such as Cline used [I] at the exit plane of a nozzle calculation. Three charac- 
terstic relations and the specified nozzle exit pressure form a system of four coupled 
equations for U, U, p, and p. Such a boundary condition is also nonreflecting; however, 
it requires many more operations and thus more computation time per time step than 
the present nonreflecting boundary condition. 

Although the analysis in this paper is based on the inviscid equations, the computa- 
tions with the model problem show that the results are applicable to the high- 
Reynolds-number viscous equations as well. 

III. DETERMINING 01 

In this section the optimal choice of the parameter 01 for boundary condition (2.5) 
is determined for a linearized constant coefficient one-dimensional system of equations 
corresponding to the equations of fluid flow. 

Consider the system 

(3.1) 

which is a linearized system for u and p, the deviations from the steady-state solution. 
The steady-state values ii, p, and p are positive constants, and 0 < x < L, t 3 0. The 
boundary conditions are 

u(0, t) = 0 at x = 0, 

aP -- 
at pc 2 + cxp = 0 at x = L. 

The optimal choice for the parameter 01 is that value which makes the deviations u 
and p tend to zero most rapidly. 

It is assumed that 

0 < iTi < z = (yp-‘li>‘l” 

so that the boundary at x = L is a subsonic outflow boundary. 
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The solution to system (3.1) is a superposition of solutions of the form Ll= e-z(t-Az) _ pz(t-iLz) p = pp(e-z(t-Az) + e-r+uz) ;s (3.2) 

where h = (17 + 2))’ and p = (U - C)-’ and the values of z are to be determined by 
the boundary condition at x = L. 

Substituting solutions (3.2) in the boundary condition at x = L results in 

0 = P&d-L4 . (-22 + a(1 + eZ(A-la)) = 0, 

Set 

7 = L(h - p) = 2LC/(? - U”) > 0; 

then the equation relating 01 and z is 

a = 2z/(l + eZ’). (3.3) 

This relation determines an infinite set of complex functions z,(a) defined for all 
real values of CX. The optimum (Y is that for which the real parts of all the ZJCX) are as 
large as possible. That is, choose 01 so that the transient solution to Eqs. (3.1) decays 
most rapidly. Note that when 01 < 0, then Re z < 0, so only positive values of N need 
to be considered. 

Set 5 = 27 and D = 2/(017). Then Eq. (3.3) becomes 

0 = (1 + er>/L O<a<oo. (3.4) 

This equation defines an infinite set of functions &Ja) where 5, is determined by 

L(O) = m+, m = &l, 13, &5 ,.... 

Note that cm is defined only for odd m, and c*(o) = ten(u) when c,(u) is not real. 
Two constants that are important in the following are <* and U* defined by 

5” = I + ecz* = 1.2784645, 
g* = &* = 3.5911214. 

<* is that real value of c that gives the least value of u in Eq. (3.4), and u* is that 
least value. The functions Cm(u) for m # &I are well-defined functions for all 
nonnegative values of u. However, &(u) and i-,(u) are only well defined in the interval 
0 < u < a*. At u = u*, 

&(a*) = (-,(u*) = <*. 

These functions can be extended for all nonnegative values u by setting 

i-l(U) < i* < i,(u) for u B CT*, 

where c,(u) and cWI(a) are the two real branches determined by Eq. (3.4). 
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The next theorem gives the optimal choice of D and LX. 

THEOREM. The following relation holds: 

therefore the optimal choice for a: is 

a* .-. 
F” 

- +Q* - 1). 

Proof. The proof is in two parts. The first part considers cm(u) only for / m 1 > 1. 
It is shown for these values of m that Re <&a) > [* for u > u*. This requires 
showing that Re &,L(o) is unbounded as B increases. Next it is shown that Re iPI < 
<* for all u. Since cP1(u*) = [* this will complete the proof. 

From Eq. (3.4) it follows that 

u Im &Ju) = Im e’,(O). 

Since the right side of the above vanishes when Tm cm(u) is an integer multiple of r, 
for 0 < u < cc the imaginary part of <,( u cannot be a nonzero integer multiple ) 
of 77. 

Since i&(O) = mni, this shows that 

I Im Cm(u) - m57 I < 77, lmlfl. 

Consider now only m with 1 m 1 # 1. From the above 

~(1 m - 1)~ < u 1 Im f&(u)1 < eRe rm. 

This shows that Re cm(o) is unbounded as u increases. Therefore Re {Jo) = <* for 
some value of U. 

From Eq. (3.4) it follows that 

uReSm<lie . Re 5, 

Because the inequality 

u* < (1 + e%)/x 

holds for all real x, with equality only for x = i*, it follows that when Re 5, = c* 
then u < (T*. Since Re c,, > [* for large u it must hold that Re 5, > 5* for all 
a >, u*. 

Consider now m = il. First it will be shown that for 0 < u < u*, 

Re ii(u) = Re 5X4 < 5* 

with equality only for u = u*. 
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From Eq. (2.4) and u* = &* one obtains 

If 5 = {* + itI, then 

and 

cu ~ dq p = o*(cos e - I), 

oe = U* sin 8. 

Eliminating u from the above two equations yields the equations 

<*(I - sin e/e) = 1 - cos e. 

But for 1 0 ! < 7~ 

2(1 - sin e/e) < 1 - cos e, 

and since {* < 2, it follows that Re cl(q) = c* only for 0 = 0, and 

Re l,(u) -c i* for 0 < u < u*. 

Moreover, for u > u* the value of ~-l(u) is less than {*. This proves the first 
relation in the theorem. 

Relating the above results to the parameter LY, one sees that for maximum damping 
of the transient solution of Eq. (3.1), a: should be chosen so that 

This proves the theorem. 
For u near u*, &,(u) have the expansions 

C*,(u) = {* & [25*(5* - I)]‘/” (u - ,*)I’2 

+ +([* - 1)(3 - 1;*)(u - u*) + O(u - u*)3/2 

and hence for u < u* 

Re &(u)E {* - 0.16(~* - u)+ O(U - ~*)2 

and for u > u* 

Re l-,(u) g c* - 0.84(~ - u*)lj2 + O(U - u*). 

From this it is apparent that in estimating u: it is better to overestimate 01 (i.e., use a 
smaller value of a) rather than to underestimate cy. 
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IV. TEST PROBLEMS 

Solutions were obtained to the time-dependent two-dimensional compressible 
Navier-Stokes equations for two model problems to compare the present non- 
reflecting boundary condition (2.5) with two other boundary conditions. 

The equations describing the conservation of mass, momentum, and energy may 
be written in dimensionless conservation form as 

g+g+g:o, 
where 

i 

PU 
pu 2 i T p - ~xx 

F= puv - 7x71 

(E + p - T,,)u - r,,r - $ g 

and where 

G= 

PL' 
put - Tgl: 

pu2 f P - Ttw 

J 

7 
yk W 

(E + P - T&’ - T,,U - x ay 

(4.1) 

in terms of density p, the x and y velocity components u and v, viscosity coefficient p, 
specific total energy E, coefficient of heat conductivity k, and temperature T. CJ and R 
are the dimensionless Prandtl number and Reynolds number, respectively, and y is the 
ratio of specific heats. 0 was taken to be 0.72 and y was 1.4. 

The flow was taken to be laminar and thus the viscosity is given by the Sutherland 
law. Finally, the pressure is related to the temperature and density by the equation of 
state 

P = (Y - 1) PT. (4.2) 
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These equations were advanced in time to a steady state using the unsplit 
MacCormack finite-difference algorithm [5] on the CDC STAR-100 computer. A 
forward-predictor, backward-corrector operator sequence was used for all time steps. 

The model problems were chosen so that the effect of the outflow boundary con- 
ditions could be isolated without the complicating effects of geometry. The first 
problem is shown schematically in Fig. 1. The flow is a uniform subsonic flow in the 
x-direction with an interior two-dimensional perturbation at t = 0. The boundary 
conditions at inflow and at the upper and lower boundaries shown in Fig. 1 were used 
with several outflow boundary conditions. At a subsonic inflow boundary three of the 
variables must be specified for the problem to be well posed (see Oliger and Sundstriim 
[6]). A square 21 x 21 uniform grid was used in all cases with a 7 x 7 initial distur- 
bance centered in the computational domain. Three cases were run with different 
values of the free-stream Mach number n/l, . The total temperature was taken to be 
initially constant throughout the field; however, the static temperature and pressure 
in the initial disturbance were twice the free-stream values. The Mach numbers for 
the free stream flow iM, and the disturbance Mi, as well as the Reynolds number R, 
were as follows: 

MK Mi R 

0.8 0.283 3488 
0.6 0.212 2932 
0.4 0.141 2129 

The initial density field was then computed from the equation of state (Eq. (4.2)) 
using the local values of p and T. 
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FIG. I. Solution domain, initial conditions, and boundary conditions for the first test problem. 
The free-stream flow is given by the subscript m and the initial disturbance is given by the subscript i. 
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The second problem is shown schematically in Fig. 2. A 41 x 21 grid was used, the 
solution domain was extended to x = 2.0, and the disturbance was centered at 
x = 1.5. The flow parameters and the size of the disturbance were the same as in the 
first problem. 

Y 

T 

ZERO-TH ORDER EXTRAPOLATION 
OF ALL VARIABLES 

INFLOW OUTFLOW 

U-U- 

v-0 
P’P, 

ZERO-TH ORDER 
EXTRAPOLATION FOR T 

0 2.0 x 

ZERO-TH.ORDER EXTRAPOLATION 
OF ALL VARIABLES 

ZERO-TH ORDER 
EXTRAPOLATION 
FOR u,v,T 

PLUS BOUNDARY 
CONDITION FOR p 

Mi 
Ti=ZT, 

Pi = 2Pca 

FIG. 2. Solution domain, initial conditions, and boundary conditions for the second test problem. 

The three boundary conditions for density are given by the following, where the 
two subscripts refer to the x and y grid point indices, respectively, the superscripts 
refer to the time step, and NI is the last grid index in the x-direction. 

(i) The present nonreflecting boundary condition: 

P “N,; = P:;,;/(Y - 1) T;;,; 5 (4.3) 

where pN,,i is computed from the finite-difference approximation to Eq. (2.5), i.e., 

P “,fj = LPZ1.j + O1 At P, + P~,,jc~l,j(~~;; - ~~J 1 +y At 3 

where TlEi in (4.3) and u&$ in (4.4) are the extrapolated values. 

(ii) The constant-pressure boundary conditions: 

(4.4) 

P ;;,\ is computed from (4.3) with p;$,: = p, 

(iii) Extrapolation of density: 

P “N:;j = P;&,j * (4.5) 

In all three cases the outflow boundary condition was applied only after the correc- 
tor step. At the end of each predictor step the outflow boundary values were held at 
the previous corrected values. Note that boundary condition (ii) is the limit of bound- 
ary condition (i) as 01 tends to infinity. 
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Convergence to steady state was defined as occurring when the following condition 
was satisfied at every point in the field, 

where the subscripts i and j are the x and y grid point indices, respectively, the super- 
scripts refer to the time step, and $ represents each dependent variable (u, U, p, 7’). 
E = IO-* was used for all calculations. 

INFLOW STEP = 2 

600 800 

FIG. 3. Static pressure difference (p - pa) for selected time steps using constant pressure outflow 
boundary condition. 
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INFLOW STEP = 2 

600 800 

FIG. 4. Static pressure difference (p - pm) for selected time steps using new nonreflecting outflow 
boundary condition. (a = 0.25) 

V. RESULTS 

Figures 3 and 4 illustrate the advantage of the nonreflecting boundary condition (i) 
over the constant-pressure boundary condition (ii) for the first model problem with 
M, = 0.8. 

In Fig. 3 plots of the difference between calculated pressure and steady-state 
pressure (p - pm) are presented for eight selected time steps for the constant-pressure 
boundary condition (ii). The first plot shows the disturbance after two time steps. 
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After 10 steps the initial wave has reached the outflow boundary and reflections have 
begun to occur. As the calculation proceeds waves continue to move back and forth 
across the computational domain with the amplitude of the waves continually de- 
creasing. The calculation was continued for 20,000 steps, but did not converge for 
E = lo-*; however, the maximum deviations in U, p, p, and v from their steady-state 
values were all less than 0.2 “/ 

Figure 4 shows plots of p - px for the computation with the present nonreflecting 
boundary condition (i) with 01 = 0.25 for the same eight times as in Fig. 3. The 
pressure fields for 2, 10, and 40 steps are very similar to those for the corresponding 
constant-pressure boundary condition case except near the outflow boundary. 
Boundary condition (i) adjusts the pressure at the outflow boundary so that the the 
disturbance is not fully reflected back into the computational domain. From the plots 
of steps 100 to 800 it can be seen that the pressure field with boundary condition (i) 
is settling to steady state much more rapidly than for the constant-pressure case. The 
solution for a: = 0.25 converged to a steady state (E = 1O-8) in 3383 steps. 

0' 1 I I I I I , I 
0 a2 a4 0.6 as 1. 0 1. 2 1. 4 1.6 1.8 

a 

FIG. 5. Effect of pi on convergence for the first test problem. 

Boundary condition (i) was used with several values of the parameter ~1 to study its 
effect on the convergence to steady state. Figures 5 and 6 show the number of time 
steps necessary to achieve convergence as a function of LI for the different values of 
AR, in the first and second problems, respectively. An estimate of the optimal 01 can 
be made using Eq. (3.5) to compute (Y *. The optimal 01 as determined from numerical 
experiments and LY* for the two problems are as follows 
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FIG. 6. Effect of a on convergence for the second test problem. 

Note from Fig. 5 that for OL equal to 01* the number of time steps needed to achieve 
convergence can be as much as twice that needed for the optimal a, but it is a signifi- 
cant improvement over boundary condition (ii), which did not reach convergence by 
20,000 time steps. Of course since Eq. (3.5) was derived from the simplified 
system (3.1), one cannot expect strict agreement with the results for the two-dimen- 
sional nonlinear Navier-Stokes equations. It is apparent, therefore, that to estimate the 
optimal (y. for the Navier-Stokes equations one can use 01* from Eq. (3.5). Moreover, 
one might choose a somewhat larger value than 01* since, by the remarks at the end of 
Section III, an overestimation of the optimal 01 is expected to be less harmful than an 
underestimation of the same magnitude. 
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Figure 7 displays the number of time steps needed to achieve convergence to 
steady state as a function of the nondimensional quantity u-1 as used in Section III, 
i.e., 

The striking similarity of the curves in Fig. 7 and their shape shows that the analysis 
of Section III is qualitatively correct. That is, the time needed to achieve steady state 
is determined largely by u-l independently of M, and the length of the domain L. 

140 x103 

c 

P 

12.0 - 

Y 
no - 

65 
B 
S 8 ao- 

e 

2 6.0- 

E 

4.0 - 

2. 0 - 

01 I I I I , I I I 
0 0.2 a4 0.6 as LO 1. 2 1.4 1.6 o-1 1. 8 

FIG. 7. Effect of 0-l on convergence for both test problems. 

Computations were also made using the first problem with M, = 0.8 and both the 
boundary condition (iii), i.e., extrapolation of all variables, and boundary condition 
(i) with 01 = 0. Boundary condition (iii) is not correct mathematically since the ana- 
lysis indicates that one dependent variable should be specified and here all four are 
extrapolated. However, this boundary condition may be the only available option for 
some problems if no values of the dependent variables are known at the boundary. 
With extrapolation, the solution converged in only 2031 time steps, but to slightly in- 
correct values of temperature and hence pressure. With the Q! = 0 boundary condition, 
convergence was reached in 1924 time steps and also to a slightly incorrect value of 
the temperature. Note that temperature is the one dependent variable which was 
extrapolated at the inflow boundary. In the present case the error in temperature 
changed the Mach number to 0.802 for boundary condition (iii) and to 0.793 for the 
a: = 0 boundary condition. These two boundary conditions were also used for a case 
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in which the area of the initial distribution was much larger and extended to the 
outflow boundary. For the extrapolation boundary condition the Mach number was 
low by 21 % and for 01 = 0 it was low by 33 %,. This shows that with these boundary 
conditions the steady-state solution is strongly dependent on the initial flow field, 
which is a direct consequence of not specifying the steady-state pressure at the outflow 
boundary. 

CONCLUSIONS 

The nonreflecting boundary condition presented in this paper has been shown to be 
effective in reducing reflections at the subsonic outflow boundary for the compressible 
Navier-Stokes equations. It has been shown to be better than extrapolation and 
specification of the outflow pressure for the model problems considered. 

These model problems did not have the complicating effects of solid-wall boundaries, 
separated flows, etc. However, the problems did have an initial disturbance large 
enough to produce substantial reflections at the outflow boundary. The conclusions 
might be altered in the presence of these complicating effects. 

The time required for the model problems to attain steady state has been studied as 
a function of the parameter in the boundary condition. Moreover, its qualitative 
behavior has been shown to have the character predicted by the analysis of a sim- 
plified problem. This analysis also supplies a rough estimate of the optimal value of 
the parameter. 
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